A Proposed Churn Prediction Model
نویسندگان
چکیده
Churn prediction aims to detect customers intended to leave a service provider. Retaining one customer costs an organization from 5 to 10 times than gaining a new one. Predictive models can provide correct identification of possible churners in the near future in order to provide a retention solution. This paper presents a new prediction model based on Data Mining (DM) techniques. The proposed model is composed of six steps which are; identify problem domain, data selection, investigate data set, classification, clustering and knowledge usage. A data set with 23 attributes and 5000 instances is used. 4000 instances used for training the model and 1000 instances used as a testing set. The predicted churners are clustered into 3 categories in case of using in a retention strategy. The data mining techniques used in this paper are Decision Tree, Support Vector Machine and Neural Network throughout an open source software name WEKA.
منابع مشابه
Hierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملNeighborhood Cleaning Rules and Particle Swarm Optimization for Predicting Customer Churn Behavior in Telecom Industry
Churn prediction is an important task for Customer Relationship Management (CRM) in telecommunication companies. Accurate churn prediction helps CRM in planning effective strategies to retain their valuable customers. However, churn prediction is a complex and challenging task. In this paper, a hybrid churn prediction model is proposed based on combining two approaches; Neighborhood Cleaning Ru...
متن کاملTurning telecommunications call details to churn prediction: a data mining approach
As deregulation, stew technologies, and new competitors open up the mobile telecommunications industry, churn prediction and management has become of great concern to mobile service providers: A mobile service provider wishing to retain its subscribers needs to be able to predict which of them may be at-risk of changing services and will make those subscribers the focus of customer retention ef...
متن کاملPredicting Influential Mobile - Subscriber Churners using Low - level User Features
In the last years, customer churn prediction has been very high on the agenda of telecommunications service providers. Among customers predicted as churners, highly influential customers deserve special attention, since their churns can also trigger churns of their peers. The aim of this study is to find good predictors of churn influence in a mobile service network. To this end, a procedure fo...
متن کاملCustomers Churn Prediction and Attribute Selection in Telecom Industry Using Kernelized Extreme Learning Machine and Bat Algorithms
With the fast development of digital systems and concomitant information technologies, there is certainly an incipient spirit in the extensive overall economy to put together digital Customer Relationship Management (CRM) systems. This slanting is further more palpable in the telecommunications industry, in which businesses turn out to be increasingly digitalized. Customer churn prediction is a...
متن کاملA Novel Genetic Algorithm Based Method for Building Accurate and Comprehensible Churn Prediction Models
Customer churn has become a critical problem for all companies in particular for those that are operating in service-based industries such as telecommunication industry. Data mining techniques have been used for constructing churn prediction models. Past research in churn prediction context have mainly focused on the accuracy aspect of the constructed churn models. However, in addition to the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012